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Abstract 

The theory of t h ree -pa r t i c l e  c o l l i s i o n s  i n  a plane which was developed 

i n  a n  e a r l i e r  paper is  extended t o  s c a t t e r i n g  i n  space. Formal expressions 

f o r  s c a t t e r i n g  amplitudes and cross sections a r e  obtained f o r  i n e l a s t i c  and 

rearrangement c o l l i s i o n s  a s  w e l l  a s  f o r  e l a s t i c  s c a t t e r i n g .  The o p t i c a l  

theorem is a l s o  extended t o  t h e  three-body case.  The paper concludes with 

a d i scuss ion  of t h e  dynamics of a co l l i s ion  among t h r e e  s t r u c t u r e l e s s  par- 

titles which i n t e r a c t  v ia  a short-range p o t e n t i a l .  * 
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FIGURE CAPTION 

Figure 1. Three-body sca t t e r ing  diagrams. ( a )  Diagram corresponding 

t o  the  f i r s t - o r d e r  term i n  t h e  Born series which conta ins  the  in t e rac -  

t i o n  VI,. 

given i n  Eq. (37). (b )  and (c )  Diagrams corresponding t o  the  second 

order  t e r m  i n  t h e  Born s e r i e s  which contain VI, V,, and V,, V,,, res -  

pec t ive ly .  (d )  Pseudo three-body diagram corresponding t o  the  second 

order  t e r m  i n  t h e  Born series which conta ins  VI, VIS. 

This  pseudo three-body process  is  represented by t h e  amplitude 
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I Ilfl'RODUCTION 

In an e a r l i e r  paper' we discussed the  s c a t t e r i n g  of three p a r t i c l e s  

cons t ra ined  t o  motion i n  a plane wi th  t h e  a i d  of t h e  i n t e g r a l  equation of 

Lippmann and Schwingez' 

formalism t o  motion i n  space, and u t i l i z e  t h e  r e s u l t s  i n  a simple appl i -  

ca t ion .  

In  the  present  paper w e  s h a l l  extend t h i s  

W e  found i n  Paper I t h a t  the general ized angular momentum was espe- 

c i a l l y  appropr ia te  f o r  t r e a t i n g  th ree -pa r t i c l e  c o l l i s i o n s  i n  a plane by 

means of t h e  representat ions '  which employ, i n  addi t ion  t o  the  energy K: 

t h e  dynamical va r i ab le s  

( B )  A 2 ,  L,  and Y 

where A', L ,  Et ,  Y ,  L, ,  and L, a r e  def ined i n  Eqs. (1) and (5) of Paper 

I. Although no s p a t i a l  analogue of ( A )  has y e t  been developed, the p lanar  

r ep resen ta t ions  ( B )  and (C) a r e  analogous, r e spec t ive ly ,  t o  t h e  following: 

where t h e  L a r e  t h e  z-components of ordinary angular momentum. I t  i s  

evident  t h a t  i n  the  s p a t i a l  case w e  have s i x  degrees  of freedom (excluding 

i n t e r n a l  s t r u c t u r e  of t he  co l l i d ing  p a r t i c l e s ) ,  one of which i s  again taken 

a s  t h e  energy. In Paper I it was demonstrated t h a t  (B) and (C) d i f f e r e d  

only by a ( t r i v i a l )  phase. As one may suspec t ,  t h e  r e l a t i o n s h i p  between 
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( B ' )  and (C') i s  more complicated; i n  f a c t ,  they a r e  connected by a 

un i t a ry  t ransformation whose elements a r e  Clebsch-Gordon coeff i c i e n t s 6  

In Paper I w e  b r i e f l y  discussed the  physical  s ign i f i cance  of and 

t h e  r e l a t ionsh ip  of t h e  generalized angular momentum va r i ab le s  t o  the  

c r i t e r i o n  f o r  a three-body c o l l i s i o n  i n  a plane.  It was concluded t h a t  

i n  the  quantum regime t h e  p a r t i c l e s  approach more c lose ly  a s  A ,  t he  

quantum number corresponding t o p ,  decreases .  For a given value of A,  

t h e  system m o s t  c lo se ly  approaches a simultaneous c o l l i s i o n  of t h e  t h r e e  

p a r t i c l e s  a t  vanishing IJ ( the  eigenvalue of C ) i n  t h e  symmetric repre-  

s en ta t ion  or a t  A = m i n  t h e  asymmetric one. In the  r ep resen ta t ion  

(C') t h e  c r i t e r i o n  for  closest approach becomes A = A, + A,. 

t 

+ 
It  i s  

i n t u i t i v e l y  obvious t h a t  l a r g e r  values of A w i l l  con t r ibu te  t o  the  three- 

body i n t e r a c t i o n s  when two-body l i f e t i m e s  a r e  long. The r e l a t i o n s h i p  

can i n  f a c t  be demonstrated, and Smith' has r ecen t ly  done t h i s .  

In m o s t  cases  of i n t e r e s t ,  members of assemblies of p a r t i c l e s  i n t e r -  

a c t  with each q ther  via  two-body c e n t r a l  f o r c e s ,  i . e . ,  t he  d i r e c t i o n  of 

t h e  f o r c e s  i s  p a r a l l e l  t o  t he  l i n e  connecting t h e  cen te r s  of t h e  p a r t i c l e s .  

If a t h i r d  p a r t i c l e  i n t e r a c t s  w i t h  such a p a i r ,  a torque is  exer ted  on 

t he  p a i r  thereby changing i t s  angular momentum. Hence X ArA2m,mz a r e  

11 not  good quantum numbers" w i t h  respect  t o  t h e  i n t e r a c t i o n ,  and t h e  

computations of s c a t t e r i n g  amplitudes, phase s h i f t s ,  e t c . ,  become extremely 

d i f f i c u l t  t o  ca r ry  o u t .  Some improvement i s  gained by the  adoption of 
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r ep resen ta t ion  ( B ' )  s ince  L2 and L a r e  r igorous ly  conserved because of 

t h e  absence of ex te rna l  fo rces .  Actual ly  it i s  e a s i e r  t o  make the  ca l -  

c u l a t i o n s  using representa t ion  (C') and then transform t o  ( B ' )  w i t h  t he  

a i d  of t ransformation (1). 

rep resen ta t ions  is  a hyperspherical  one 

Z 

The coordinate system bes t  s u i t e d  t o  these 

6; = p cos x s i n  ex cos jhl 

i n  which w e  have used a s p a t i a l  p a r t i t i o n i n g  s imi l a r  t o  t h a t  shown i n  

Fig.  2 of Paper 1. 

In two-part ic le  s c a t t e r i n g  t h e  two va r i ab le s  which a r e  required t o  

descr ibe  t h e  kinematics of t h e  e l a s t i c  c o l l i s i o n  process a r e  usua l ly  

taken a s  the  energy and the  momentum t r a n s f e r .  In a three-body c o l l i s i o n  

fou r  va r i ab le s  a r e  required to  t a k e  account of the  c o l l i s i o n  of t h e  t h i r d  

p a r t i c l e  with the  1-2 p a i r ;  genera l iz ing  t o  n-body c o l l i s i o n s ,  w e  r equ i r e  

2(n-1) kinematic var iab les .  

l e t  us  square t h e  magnitude of the general ized momentum t r a n s f e r  using 

t h e  coordinate  sys t em (2 )  

In  order t o  i n v e s t i g a t e  t h e  poss ib l e  choices  

where 
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n 
1-X 

(4  1 = 2k s i n  f (e," - e2) ( s in  i xo s i n  x i &  ) 

i 
= 2k s i n  f (x" - x ) 

k i s  the  magnitude of t h e  general ized momentum. The 

t h r e e  q u a n t i t i e s  A,, &, and A have t h e  fol lowing physical  s ign i f icance :  

A, i s  the  momentum t r a n s f e r  between p a r t i c l e s  1 and 2 ,  & i s  t h e  momen- 
X 

t u m  t r a n s f e r  between p a r t i c l e  3 and t h e  1-2 p a i r ,  and A descr ibes  t h e  

change i n  togetherness"  (or togetherness t r a n s f e r " )  of the  th ree  par- 

t i c les  brought about by t h e  c o l l i s i o n .  The magnitudes of these  th ree  

q u a n t i t i e s ,  toge ther  with the  energy E = - k2 

of independent kinematic var iab les .  

x 
11 I t  

c o n s t i t u t e  a complete set 
2P' 

The Schrgdinger equation descr ibing t h e  motion of t h e  th ree  p a r t i -  

c l e s  can be w r i t t e n  i n  t e r m s  of t h e  va r i ab le s  

i n  terms of t h e  coordinates  (p ,  x ,  e x ,  02, ql ,  pfi). 
and 5' or a l t e r n a t i v e l y  

The former set 

- 

y i e l d s  plane wave so lu t ions  

i n  which w e  have chosen our u n i t s  such t h a t a  = 1 and t h e  normalization 

i s  one p a r t i c l e  per  u n i t  volume. In t h e  absence of a p o t e n t i a l  t h e  l a t -  

t e r  y i e ld  t h e  so lu t ions  

where J 

k i s  the  magnitude of t h e  momentum (k2 = 2pK), and 

(kp)  i s  t h e  Bessel funct ion of t h e  f i r s t  kind of order  X+2, x+2 

4 



1 1 3 
x2F1 [- 5(A-J1-a2), z ( h ,  + J l  + J 2  + 4 ) ;  J 2  + -. s i n 2  x ]  2' 

where the  2F1(a,b;  c ;  2 )  a r e  Jacobi polynomials and the  Y 

spher ica l  harmonics. 

(e,$) a r e  am 

In t h e  following sec t ion  we s h a l l  ob ta in  t h e  f r e e - p a r t i c l e  Green's 

func t ion  and equat ions f o r  t h e  s c a t t e r i n g  amplitude and c ross  sec t ion .  

Succeeding sec t ions  w i l l c t e a l w i t h  a three-body formulation of t h e  o p t i c a l  

theorem and with a simple appl ica t ion  of t h e  theory.  Discussion of t h e  

a n a l y t i c  p rope r t i e s  of t he  th ree -pa r t i c l e  s c a t t e r i n g  amplitude w i l l  be 

reserved f o r  a f u t u r e  paper. 

I1 COLLISION DYNAMICS 

As i n  Paper I ,  w e  wr i t e  the  equat ion f o r  t h e  s t a t e  vector  I s> of 

t h e  s y s t e m  i n  i n t e g r a l  

IS> = 1 i> + G ( + ) ( E o )  v I s> (9 

5 



where ti> is t h e  s t a t e  vector  a t  t = - m, V i s  the  i n t e r a c t i o n  p o t e n t i a l ,  

and G ( + ) ( E , )  i s  a f r e e - p a r t i c l e  propagator 

In Eq. (10) K i s  t h e  f r ee -pa r t i c l e  Hamiltonian operator  and E i s  the  

usual  a d i a b a t i c  switching parameter. In conf igura t ion  space representa-  

t i o n  w e  thus  have 

where 

with the  a i d  of some standard mathematical techniques' Eq. (12)  can be 

c a s t  i n  t h e  form 

The in t eg ra t ion  ind ica ted  i n  Eq. (13) i s  c a r r i e d  out  over contours  around 

t h e  f i r s t  and f o u r t h  quadrants (see Paper I ) ,  y i e ld ing  

6 
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which takes the asymptotic form 

One can also express the Green's function in terms of the hyperspherical 

wave functions ( 6 )  in which case we obtain 

where a! denotes the set of quantum numbers A.t,~2m,m2. 

Inelastic scattering is possible if one or more of the particles 

has internal structure. If all three are of this type, the free-particle 

wave functions can be written 

where Rn(P), Sn(o), and T ( T )  represent the internal wave functions of 

the particles. The Green's function (12) of the interaction then takes 

P 

the form 

When the integration is performed as in Paper I, we obtain 

7 



in which we have made the replacement 

Expressed in terms of the generalized angular momentum eigenfunctions 

(representation C') Eq. (19)  becomes 

This form can easily be recast in representation ( B ' )  with the aid of 

the unitary transformation (1). 

With the aid of an elementary extension of the methods employed in 

Appendix A of Paper I we can readily obtain the N-body Green's functions 

for elastic scattering. A s  one may suspect the results for odd-N and 

even-N are different: 

Although Eq. (22) will not be used again in this paper, it is an inter- 

esting generalization of the methods employed here. 

The asymptotic form of the wave function (11) can be expressed in 

terms of a scattering amplitude f (TT A n  , T T ~ ) .  * 

i 
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which i s  r e l a t e d  t o  the  c ros s  sec t ion ,  where 

A 4 1  

J . - - i k p E ' E  V ( E ' >  q (E ' )dE' ,  (24)  f ( & ,  Q = '(2.rr7"/" P 
yc T . -  -y1 

V A l  

A A and rTT0 and ri represent  t h e  d i r ec t ions  of t h e  incoming and sca t t e red  

t h r e e - p a r t i c l e  momenta, respec t ive ly .  As w e  

quent ly  more usefu l  t o  expand the  s c a t t e r i n g  

genera l ized  angular momentum eigenfunct ions:  

saw i n  Paper I ,  it i s  f r e -  

amplitude i n  a series of 

where 

In  t h e  e a r l i e r  work t h e  r e l a t ionsh ip  of the  s c a t t e r i n g  amplitude t o  

t h e  three-body d i f f e r e n t i a l  cross  sec t ion  U(T. ,T,) was developed i n  t w o  
c l  HI 

d i f f e r e n t  ways. The f i rs t  proceeded f r o m  t h e  r a t i o  between t h e  magnitude 

of t he  s c a t t e r e d  f l u x  and t h e  incoming cur ren t  dens i ty ,  whereas t h e  

second approach was via  time-dependent per turba t ion  theory which g ives  

t h e  c ros s  sec t ion  i n  terms of a t r a n s i t i o n  matr ix  element R i 
To $2 
Hu 

vo i s  the  ve loc i ty  of the  incoming p a r t i c l e s  given by vo=k/p, p(E) i s  

t h e  number of f i n a l  s t a t e s  per  un i t  energy, and4 

9 



Both schemes, of course,  y i e ld  the same r e s u l t ,  

u(T~,T . )  = k3 lf(%o,?i)12 
-71 

f o r  e l a s t i c  c o l l i s i o n s ,  and 

f o r  i n e l a s t i c  c o l l i s i o n s .  The t o t a l  c ros s  sec t ion  i s  obtained by in t e -  

g ra t ing  r n ( ~ ~ , ~ . )  over t h e  hypersolid angle  R where 
u.% -1 

Subs t i t u t ion  of t h e  expansion (25) f o r  f (3 , ,$  ) i n t o  Eq. (29) y i e l d s  
i 

where a r ep resen t s  t h e  quantum numbers A J l J 2 m l m 2 .  

t i o n  f o r  s c a t t e r i n g  from the  s e t  (AJ1J2m1m,) t o  t h e  set (AJ imi rn ; )  i s  

Thus t h e  c ros s  sec- 

(33 1 uk(a + a ' )  = k 3 ( f  a' 1' 
a 

Phys ica l ly ,  t h e  c ros s  sect ion u has t h e  s ign i f i cance  of a two-body 

c o l l i s i o n  c ros s  sec t ion  o f ,  f o r  example, p a r t i c l e s  1 and 2 mul t ip l i ed  

by t h e  volume wi th in  which t h e  t h i r d  p a r t i c l e  must l i e  i n  order  t h a t  

two-part ic le  i n t e r a c t i o n s  occur simultaneously. 

In  the  same way a s  i n  Paper I we can introduce a th ree -pa r t i c l e  

s c a t t e r i n g  matr ix  S which connects t he  e x i t  and entrance channels,  

spec i f i ed ,  f o r  example, by t h e  s e t s  of quantum numbers a, a'. The 

c ross  sec t ion  CJ (a +a') i s  r e l a t ed  t o  S 

C a '  

by k m' 
10 



Comparison of E q s .  (33) and (34) immediately l e a d s  t o  t h e  fol lowing 

r e l a t i o n s h i p  between the  s c a t t e r i n g  matr ix  and t h e  s c a t t e r i n g  amplitude 

k4 a' s -  m' - 6am1 --m (35 1 

In  order  t o  gain f u r t h e r  i n s igh t  i n t o  t h e  physics of t he  c o l l i s i o n  

process  it i s  convenient to  expand t h e  s t a t e  vector  given by E q .  ( 9 )  i n  

a Born s e r i e s  

I f  V ( S )  i s  wr i t t en  

s> = li> + G V l D  + G V G V I D  + .... (36 1 

a s  t h e  sum of th ree  two-part ic le  p o t e n t i a l s  az:! the 

r e s u l t  i n se r t ed  i n  E q .  (36) ,  w e  see immediately t h a t  Is> conta ins  con- 

t r i b u t i o n s  from two-part ic le  (pseudo t h r e e - p a r t i c l e )  a s  w e l l  a s  from 

t h r e e - p a r t i c l e  c o l l i s i o n s .  The two-body cont r ibu t ions  a r i s e  from t h e  

second t e r m  i n  t he  Born s e r i e s  and a l s o  from higher  order  t e r m s  l i k e  

GV1,GVl,(i>.  

ponding t o  each such term i n  the  s e r i e s  and t h i s  is  i l l u s t r a t e d  i n  Fig.  1. 

One can, i n  f a c t ,  construct  s c a t t e r i n g  diagrams corres-  

A s  an example of t h e  two-body cont r ibu t ions ,  it is  i n s t r u c t i v e  t o  evalu- 

a t e  t he  s c a t t e r i n g  amplitude i n  f irst  Born approximation due t o  t h e  

p o t e n t i a l  VI, a c t ing  between p a r t i c l e s  1 and 2. From E q .  (24)  w e  ob ta in  

which i s  a divergent  a s  a r e s u l t  of t h e  d e l t a  func t ion .  In t eg ra t ion  

o v e r ?  y i e l d s  a f i n i t e  r e s u l t  which i s  merely t h e  un in te re s t ing  two- 

body s c a t t e r i n g  amplitude of p a r t i c l e s  1 and 2.  Hence, t h e  second t e r m  

Y l  

11 



in the series will not contribute to the three-body scattering amplitude 

when the interactions are of the two-body type. If, however, the wave 

function appearing under the integral of Eq. (11) is represented by an 

appropriately distorted wave, the term corresponding to GV ti> does in 

fact yield three-body contributions; for example, V23(&) contributes 

to the term containing V,,(E) by distorting the approximate wave function 

used in the integral expression for the scattering amplitude. The exclu- 

sion of two-body contributions was not discussed in Paper I. 

urc 

Of great interest in any discussion of three-body scattering are 

rearrangement collisions'o~''~'2 which are subject to the usual difficul- 

ties inherent in the quantum mechanical t r z z t m e n t  of processes of this 

type: nonorthogonality of the initial and final states and inapplica- 

bility of perturbation theory in cases where the interaction can not be 

treated as small.12 

first difficulty would not arise; it is introduced by the necessity for 

making approximations in order to render the mathematics tractable. 

Mittlernanl2 has developed a formal approach which avoids this ambiguity 

by reformulating the transition amplitude so that it contains transitions 

only between mutually orthogonal states. 

If computations could be carried out exactly, the 

As an example of a three-body rearrangement collision it is instruc- 

tive to investigate the case of two-particle combination 

A + B + C + A  + BC (38 1 

In Paper I we showed that we could employ the so-called "prior interaction" 

(i.e., that in which the three interacting particles are unbound) 

v.  = v o  
1 A,B,C (39 1 

12 



t o  ob ta in  the  s c a t t e r i n g  amplitude i n  a form s imi l a r  t o  t h a t  r e s u l t i n g  

from use of t h e  "post i n t e rac t ion"  ( i .e. ,  t h a t  i n  which two of t he  par- 

t i c l e s  a r e  bound) 

where 

f H . + V . = H  + V  
1 1 f  

and H H a r e  t h e  non-interacting Hamiltonians. 

This  was approached by introducing a complex x 
i ' f 

i n t o  t h e  equation f o r  t he  Green's func t ion ,  Eq. (19). The same method 

can be r e a d i l y  appl ied  t o  th ree -pa r t i c l e  s c a t t e r i n g  i n  space,  y ie ld ing  

where $ n ( E 1 )  i s  the  i n t e r n a l  wave func t ion  of t h e  "molecule" BC with 
1u- 

i n t e r n a l  coordinates  and binding energy 
vun- 

- - 1 k2 sin'Jh 
an, (43)  

k i s  t h e  r e l a t i v e  momentum of A and BC n 

A i  
and f (Go 
" p r  i or- i n t  e r a  c t ion" f o r m  

) i s  the  two-body s c a t t e r i n g  amplitude w r i t t e n  i n  t h e  2n' T2n 

13 



which is formally similar to the "post-interaction" amplitude 

In practical problems such as three-body recombination of atoms or three- 

body electron attachment form (46)  is expected to be more tractable than 

( 4 5 ) .  We are of course still faced with the second difficulty mentioned 

above, i.e., the interaction potential can not be justifiably treated as 

small. 

/ 
Variational methods such a s  those of Hulthen and Kohn and of 

Schwinger13 can easily be adapted to the three-body problem. Schwinger's 

approach which was discussed ' u r i s f l y  i r z  Paper I proceeds via an integral 

expression for the scattering amplitude 

in which U ( 5 )  = 2bV(E). 

results. In order to apply this technique one can, for example, expand 

When f is varied with respect to ~ r * ,  Eq. (24)  
c UI 

$ as a linear combination of a suitable set of functions and vary the 

scattering amplitude with regard to the expansion coefficients. If a 

judicious choice of expansion functions has been made, the computed 

value of f should be close to the true one. By contrast Hulthe/n's 

variational prin~iple'~ involves the use of differential rather than 

integral forms to construct a functional which is varied subject to the 

appropriate boundary conditions. Actually the functionals proposed by 

Schwinger and Hulthe/n apparently do not always satisfy the appropriate 

boundary condition (outgoing scattered waves) for approximate wave 
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functions. MalikL4, l 5  ha s shown how the functional can be modified in 

such a way that this difficulty is avoided. 

111 OPTICAL TmOREM 

In two-particle scattering one can obtain a relation between the 

total cross section and the scattering amplitude corresponding to the 

forward direction. This is a consequence of the conservation of particles, 

or equivalently, of the unitarity of the scattering operator, S S = 1. 

The extension to the three-particle case is simple. We begin by writing 

S as the sum of the unit operator and a transition operator T : 

t 

S = l + T  

Then we obviously have 

T* T = -(T + T*) = -2ReT 

or in matrix representation 

-2Re <f c T(i> = 
m 

(48 1 

(49 1 

The transition matrix elements are related to the scattering amplitude 

f(n , IJ ) by the equality Ai 

Substitution of Eq. (51) into (50) yields 

(52 1 Am Af Am Ai Im f(Gf, ?) = k4 I f*(n , IJ ) f (TI- , IJ ) dGm 

which is the desired statement of the optical theorem. Since the three- 

body cross section u is related to the scattering amplitude by 

u = k3 1 (f(Gf, e)12 d $f, (53 1 
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we can write the following relationship between the cross section and 

the "forward" scattering amplitude f ( r  , r ) 
A Ai 

which is the same expression one obtains for two-body scattering to 

within a factor of (Za)'I2. 

IV APPLICATION 

To illustrate the methods developed in Section I1 for the computa- 

tion of the three-particle scattering cross section, we shall treat 

briefly the case of izteraction via short range two-body central poten- 

tials which for simplicity will be chosen to be of the well-type 

Although particles will be assumed to be identical, the antisymmetriza- 

tion requirement on the wave function will be omitted, again for the 

sake of simplicity. Expressing Eq. (55) in the coordinate system speci- 

and Eq. (2) of this paper, we obtain 

a v(r12) = V, if p cos x < - 
- d  

(57 1 



d 1 1 /2 

v ( r x 3 )  = V, if P[(, cos XI" + (- s i n  x)" - s i n  x cos x cos w ]  - < d 
a 

d 1 112 
i f  p[(, cos x)" + (a s i n  x)" - s i n  x cos x cos wl > = o a 

d 1 I f  2 
i f  p[(, cos x)" + (;I s i n  x)" + s i n  x cos x cos mu3 > = o a 

where cos w = f l e e .  

If we now i n s e r t  t h e  po ten t i a l  spec i f i ed  by Eq. (57) i n t o  the  three-  

* A  
body Schrgdinger equat ion,  mult iply b y z a  (E), and i n t e g r a t e  over  t h e  

i i y p c r s ~ l i d  angle  R ,  w e  ob ta in  a s e r i e s  of coupled r a d i a l  equations 

i n  which 

a r e  the  transformed p o t e n t i a l s ;  A ,  B ,  and C r e f e r  t o  t h e  c o n s t r a i n t s  

spec i f i ed  i n  Eq. (57). C l e a r l y  the  p o t e n t i a l  matr ix  whose elements a r e  

V 

c o n s t r a i n t s  ( 5 7 ) .  

i s  not  diagonal because of t he  "non-central" charac te r  of t h e  onf 

The asymptotic so lu t ion  t o  the  r a d i a l  equation (58) i n  the  absence 

of i n t e r a c t i o n  i s  

Since t h e  p o t e n t i a l  f a l l s  off  f a s t e r  than p-",  t h e  e f f e c t  of t h e  i n t e r -  

ac t ion  i s  t o  introduce a (non-diagonal) phase s h i f t  bl. The complete 

17 



asymptotic wave function with interaction is thus 
c 

Substitution into Eq. (23) of the form of ~r i given by Eq. (61), together 

with the expansion of the plane wave e --in eigenfunctions of the 

TT 
r..- 

ire E 

three-body Schrgdinger equation without interaction, 

enables us to evaluate the scattering amplitude in terms of the phase 

shifts b,. we then cmpare  the incident wave terms which appear on 

the right and left hand sides of the equation in order to obtain the 

following relationship (in matrix notation) of Awl to rim, 

(63) A = ( 2 ~ ) ~  e il 

Clearly the phase shifts b, are related to the scattering amplitude by 

f =  
i k 4  

and to the scattering matrix S by 

(65 ) 
2iq S = e  

The scattering amplitudes and thus the phase shifts can be evaluated 

from the interaction potential by means of suitable approximations, e.g., 

the second Born approximation. This approach yields the following 

expression for the scattering amplitude 

18 



which can be readily computed f r o m  the information concerning the poten- 

tial given previously. However, the required integrations can only be 

performed numerically and we shall not attempt this here. In place of 

the Born approximation one of the variational techniques described in 

Section I1 could also be employed, expanding the wave function f in 

a suitable set of trial functions or otherwise writing it as a function 

of a set of variation parameters. In computing the collision cross 

section, we must of course exclude the spurious contributions corres- 

ponding to purely two-body collisions. 

ai 
1 

19 



APPENDIX 

PLANE WAVE M P A N S I O N  

W e  wish to  expand t h e  plane wave exp ( i - r r  5 )  i n  hyperradial  and - -  
angular  momentum eigenfunct ions.  This  is  f a c i l i t a t e d  by wr i t i ng  the  

plane wave a s  a product of two plane waves i n  t h e  spaces of 5’ and of 

52) respec t ive ly :  

Lc 

Lh 

Each of t h e  plane waves i n  the  product i s  expanded i n  a series of Bessel 

func t ions  and spher ica l  harmonics and t h e  series a r e  then mul t ip l ied  

term by term 

where xl-gl = kp cos x cos x(.f;’*E’) 4 and ? - E 2  = kP Sin x Sin % ( + - E  A2 >. - -  
Using a well-known therorem f o r  the  add i t ion  of Bessel functions’ 

x cos ’I+’ x s i n  ”+’ sina2+ 2F1(-A1,a1+a2+A+ 2;.4,+%; s i n 2  x )  

- ( A+.l +a2 +1) ! (A+J, +& ) ! 2 (1 +a, +2A+2 ) ( A 3  ) x 2F1(-A,l?1+~2+A+2;.82+ 8 ;  s in2  x )  
A!(A+L,+&)! [ ( a , + & ) !  l2 9 
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w e  can rewrite Eq.  (A21  a s  

1 
a f t e r  making the replacement A + ~ ( A - a , - l ? , ) .  

been used to obtain the plane wave expansion developed i n  Appendix B of 

Paper I .  

The same method could have 
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RA- 451,541 - 4 6  

FIG. 1 THREE-BODY SCATTERING DIAGRAMS. (a) DIAGRAM CORRESPONDING TO I H E  
FIRST-ORDER TERM IN THE BORN SERIES WHICH CONTAINS THE INTERACTION 
V I  2 .  THIS PSEUDO THREE-BODY PROCESS IS REPRESENTED BY THE 
AMPLITUDE GIVEN IN EQ. (37). (b) AND (c) DIAGRAMS CORRESPONDING TO THE 
SECOND ORDER TERM IN THE BORN SERIES WHICH CONTAIN VI2 V,, AND 

TO THE SECOND ORDER TERM IN THE BORN SERIES WHICH CONTAINS V ,  
VI V, ,, RESPECTIVELY. (d) PSEUDO THREE-BODY DIAGRAM CORRESPONDING 

V ,  2 .  


